

Drag your design environment kicking and screaming into the
'90s with Modules!

Erich Whitney, Axiowave Networks

Mark Sprague, ATI Research

ewhitney@axiowave.com
msprague@ati.com

ABSTRACT

Creating and maintaining a design environment is a task that few people enjoy doing, yet it is a
critical part of any design team's success. Every tool vendor creates some sort of installation
environment for their own tools, but integrating tools from multiple vendors can be a challenge.
This paper presents some tips and tricks to building a flexible design environment that is easy to
use, understand, extend and maintain.

At the core of this environment is the public-domain Unix package "Modules" that provides a
modular utility for managing tool installations. Modules can also be applied to managing project
environments, and user environments as well. Modules uses simple scripts written in a Tcl
superset called "modulefiles" to create an environment. A single Unix command is used to load
and unload environments for different tools, check for tool and platform dependencies, grab the
correct version of a tool, etc. This eliminates the problems such as "Path too long", running out
of environment space, using an incorrect version of a tool and many others. Since all the tool
setup is done in Tcl, users can choose any login shell they like and they can share modulefiles
because they're in a common, standard language.

This paper shows how a design environment is constructed around Modules and demonstrates
examples of using Synopsys' Design Compiler and VCS with LSF in a non-homogeneous
compute environment.

SNUG Boston 2001 A Modules-Based Design Environment 2

1.0 Introduction – So what’s the problem with our design environments
anyway?

The typical hardware designer needs frequent access to a large number of tools. The tools might
include, among others, simulation, synthesis, data path, static timing, editors, and waveform
viewers. If the designer is also performing physical design, the list of tools required can easily
double, with floor planning, placement, clock tree insertion, detailed routing, and parasitic
extraction.

If you are working on isolating a bug, qualifying a new release, or trying to get ‘optimal’ results
from many tools, you might require simultaneous access to several versions of various tools.
How often have you heard a vendor suggest that in order to get around a problem, you use the
following sequence:

1. Analyze/elaborate your design using version A.
2. Compile your design using version B.
3. Generate your reports using version A.

Or have you ever had a designer maintain that the only way to get the results they need is to use
version X of a tool, when the rest of the project is using version X+4?

Finally, try to transparently incorporate a load sharing tool, on a non-homogeneous compute
environment, and you can see why most CAD departments are a bit gruff. It also explains why
there is a great deal of resistance to adding support for the latest hot new operating system –
Linux, NT, AIX, HPUX…

So how can you build a tool environment that will solve the following problems:

1. Provide access to multiple versions of each tool.
2. Provide a mechanism to easily switch between tool versions.
3. Limit the overhead required by CAD/IT to install a new version of a tool.
4. Minimize effort to add CAD tools to the environment.
5. Allow project specific setup of the CAD tools.
6. Support multiple Unix shells.
7. Support a heterogeneous compute environment.
8. Provide a standard mechanism for adding tools to a users environment.

1.1 How is the problem being solved?

Different portions of the wish list have been solved using a variety of mechanisms. We’ll outline
a few of the ones we have run into.

1.1.1 Go it alone

In some instances, the IT department washes its hands of any support for the CAD environment.
This certainly limits the overhead required by IT to install and support new tool versions.
However, it fails miserably on all other scores.

SNUG Boston 2001 A Modules-Based Design Environment 3

1.1.2 Homogeneous Environment

Some CAD/IT departments use the Henry Ford approach to solve the problems of supporting
multiple Unix shells and a heterogeneous compute environment: Any color as long as it’s black.
In this case, CAD/IT dictate a standard Unix shell and settle on a single compute platform. This
simplifies development of a standard login script and eliminates the need to handle multiple
executables.

Unfortunately, it also potentially locks the organization into non-state of the art processors. This
approach also necessitates upgrading the entire compute farm to change platforms, instead of
incrementally adding new systems.

The standardization on a single shell is not an issue for many users. There are those users that do
have a very strong preference for a particular shell and these users will generally chafe under the
single shell requirement.

1.1.3 Single login script
This usually starts out innocently when there are a few tools, and only a couple of revs. This
approach allows a single script to setup all of the tools. This allows the CAD or IT groups to
debug and maintain a single view of the world to the users. In this approach, there are additional
shell variables used to enable or disable various tools, and also to determine the version of the
tool the user wants. This approach can also provide the hooks required for support of multiple
platforms.

However, there are a few shortcomings with developing and using a single login script. First, it
forces all users into a single family of shells. Second, because the script is centrally maintained,
it can be difficult to add experimental tools, or beta versions of existing tools. Finally, these
scripts can grow to be excessively long. At one company that used this approach, the script grew
over the years to:

wc cshrc_sys.NEW

7128 26760 246595 cshrc_sys.NEW

So this ‘simple’ login script has grown to over 7000 lines! Needless to say, it’s maintainability is
starting to suffer somewhat.

1.1.4 Individual Shell scripts per Tool
An alternative to the single login script is to break it into multiple smaller scripts, each of which
sets up a single tool. This provides a set of more maintainable scripts, but does not alleviate the
need to require a single family of shells to be used. It does provide the ability to add new tools
into the environment easily. Multi-platform support can also be built in for tools providing this
option. This approach does not provide an easy means to switch between different versions of a
single tool. Also, it is up to the script writer to provide comments or something to notify the user
of what versions are available and what to do if an unavailable version is requested.

SNUG Boston 2001 A Modules-Based Design Environment 4

1.2 So what’s the answer?
Every company solves this problem in a different manner. We’ve presented some alternatives
that address some but not all of the desired features of a tool environment. Clearly, there must be
a solution that addresses all of these issues, and maybe one that has been in use for several years,
so the bugs have been worked out of it. Enter Modules.

2 Introducing Modules
Modules1 is a software utility that allows you to dynamically configure your Unix environment
for any number of software packages. Modules is written in C but is configured using Tcl scripts
which have extensions specifically designed to manipulate the user’s environment. Modules
abstracts the details about a software package’s installation, environment, and software
dependencies so that from a user’s perspective, all software is accessed in the same way. User’s
no longer have to worry about keeping track of environment variables (such as PATH and
MANPATH) or other installation details.

An environment built on Modules has several nice features. All applications can be setup with a
standard scripting language and methodology. Users have the option to use any login shell they
choose without fear of being alienated because of some arbitrary decision to use only one type of
shell. The environment is more robust because the modulefiles can be programmed to
accommodate your computing environment. Standards are easily defined and maintained. Also,
application versions can be easily tracked, added, or removed dynamically in the environment.
Modulefiles can be created to encapsulate a suite of tools for a user, a project, or a company—
making the Unix environment easier to use. Furthermore, tool and version conflicts can be
detected and handled automatically by the modulefile.

Modulefiles are easy to create and are typically less than 10 lines of Tcl each. Modulefiles can be
built hierarchically to any number of arbitrary levels which enables code re-use between
modules.

A typical EDA tool will come with an installation script that will add to the user’s PATH through
a setup script or by manual modification of the user’s login environment. Using Modules requires
a one-time modification of the user’s startup file. After that, software environments can be
dynamically created, removed, loaded, and unloaded with a single command. Creating
modulefiles is simply a matter of taking the shell commands from the software packages setup
script or documentation and converting them into Module’s Tcl extensions (setenv, prepend-
path, append-path, etc.)

1 Capitalized Modules refers to the software package as a whole. References to a module file (or
modulefile) itself are not capitalized. References to the module(1) command use italics with the
man page reference.

SNUG Boston 2001 A Modules-Based Design Environment 5

3 Building an Environment with Modules

3.1 Introduction
This section will go through the process of building an environment with Modules. The steps
outlined here reflect an example of how a particular design environment was built. The intent
here is to lay out the key steps in using Modules so that others can adapt it to their needs.

3.2 Installing Modules

Modules is quite easy to use once you have it installed. Installation, however, can be a bit of a
pain. This is where it’s good to have someone around who is resourceful and has some
experience with the Gnu tools. The most annoying problem we found was that the Modules
package is pretty picky about your Tcl installation since Modules is completely dependent on Tcl
in order to run. Our Unix guru had to perform a clean Tcl install in order to build Modules.

One other important note about installation—you must install the Modules software in a location
that every user will be able to access it when they login. We chose /usr/local because for us that
was an NFS-mounted directory built and attached to all machines in our environment. If you
have different machines in your environment, then you’ll have to make sure you build a version
of Modules for every architecture but the key is to remember to make the Modules install look
the same on every machine.

In our environment, Modules is installed in /usr/local/Modules/3.1.2. The user’s
.cshrc, .profile, or .bashrc script points to location of the installed version.

Next, we created a common login environment for everyone so that the Modules environment
would be setup automatically on login. This is the one place you have to worry about handling
the user’s login shell preference. In the init directory, there is a shell file for each type of login
shell (sh, csh, and their variants):

% ls /usr/local/Modules/3.1.2/init

bash csh ksh perl sh tcsh zsh

To handle the user’s choice of scripts, we determined the least common denominator among all
of the login files and came up with these three: The .cshrc file is used by csh, tcsh, and other csh
variants, the .profile file is used by sh/zsh/ksh, and .bashrc is used by bash. Here’s what these
files look like:

Here is the .cshrc file (this also works for tcsh and other csh variants):

#
set history=128
set filec
setenv HOSTNAME `hostname`
setenv DEFAULT_MODULES "modules common perl lsf"
#
Set mver to the desired Modules version

SNUG Boston 2001 A Modules-Based Design Environment 6

#
set mver=3.1.2
if ($?tcsh) then

set minit=/usr/local/Modules/$mver/init/tcsh
else

set minit=/usr/local/Modules/$mver/init/csh
endif

#
This code should only execute if you're starting from scratch
Otherwise, reload the environment
#
if (-e $minit) then

source $minit
if ("$LOADEDMODULES" == "") then

module use /usr/local/Modules/modulefiles/groups
module use /usr/local/Modules/modulefiles/projects
module use /usr/local/Modules/modulefiles/tools
module unuse /usr/local/Modules/modulefiles
module load ${DEFAULT_MODULES}

else
module update

endif
else

echo "Modules not supported on this system"
endif

If the user has additional customizations

if (-e ~/.cshrc_custom) then
source ~/.cshrc_custom

endif

See the appendix for the corresponding .profile and .bashrc files.

Each of these files do basically the same thing. First, check to make sure we are in a supported
shell, then check to see if the Modules environment is already loaded (we are just a new shell).
Second if Modules is not initialized, call the appropriate shell init file, load some basic
modulefiles, then load a user’s custom modulefile if it exists in
~/.modulefiles/username.

Finally, if the user wants to further customize their shell with shell-specific commands, then call
the appropriate customization script in their home directory.

At this point, the user has the Modules environment. They have access to a common basic set of
Unix utilities and they have optionally loaded any customizations. Putting your favorite aliases
and environment settings in your own modulefile allows you to share those settings with other
users without having to worry about which shell they’re using.

Now let’s take a look at how the modulefiles are organized. We chose to organize them into the
following four categories:

% ls /usr/local/Modules/modulefiles

SNUG Boston 2001 A Modules-Based Design Environment 7

groups/ projects/ tools/

The /usr/local/Modules/3.1.2/modulefiles directory contains all the modulefiles that came with
the Modules distribution and most importantly contains the ‘modules’ modulefile. The tools
directory contains all of the modulefiles for the EDA and other software tools we use. The groups
directory contains the modulefiles for the various teams (like designers, verification, synthesis,
FPGAs, etc.). And the projects directory contains the modulefiles for all of the design projects
that we’re managing with Modules. More on this later.

3.3 Defining a Directory Structure
Now let’s see how Modules relates to the software tools we are going to use. On our system,
there is one file server for all of the software tools. Each time we install a new package, it goes
in:

/tools/vendor_name/tool_name/version_number

Then, we create a corresponding modulefile in:

/usr/local/Modules/modulefiles/tools/tool_name/version_number

So the user only has to know the name of the tool and if they really care, they can specify the
version number. Later on, we’ll show how even this information can be simplified with the
“group” and “project” modulefiles.

3.4 Setting up a tool with Modules
In order to access a modulefile to setup part of your environment, there are a couple of files that
need to be setup properly.

The first file that is required represents the version of the tool being referenced. In most cases,
this should reflect the version numbering used by the tool vendor. So for VCS, these files would
be named 5.2.1, 6.0…

The second file is the .version file, which is used to define the default behavior when the
modulefile is loaded. This file isn’t required if only one version of the tool exists, but it is good
practice to create these files when the initial modulefile is created. The version names referenced
here need to match the file names created above. More information on this file is given in
section 3.7.

3.5 Using Modules
Users now have basically what they need to use modules. Here are some examples of the sorts of
things you do with the module command.

To see what modulefiles are available:

% module avail

-------------------- /home/users/ewhitney/.modulefiles -----------------------

SNUG Boston 2001 A Modules-Based Design Environment 8

ewhitney

------------------- /usr/local/Modules/modulefiles/tools ---------------------
covermeter/4.0.2(default) lsf/4.0.1(default)
dc_shell/2000.11(default) netscape/4.08(default)
denali/2.7 perl/5.6.0(default)
denali/2.700_022 polaris/2000.2(default)
denali/2.9000_003(default) primetime/2000.11(default)
dinotrace/9.1d(default) proverilog/2.5.2
emacs/20.4 purify/5.3(default)
emacs/20.7(default) speedsim/3.2.0(default)
explorertl/2000.2.08(default) surelint/2.0.9(default)
forte-developer/6.0(default) syscomp/4.0(default)
fpga_compiler2/3.5 tcl/8.2(default)
fpga_compiler2/3.5.1 timingdesigner/5.2(default)
fpga_compiler2/3.5.2 vcs/5.2.1
fpga_compiler2/3.6(default) vcs/6.0(default)
gcc/2.95.2(default) vcs/6.0Beta2
hdlscore/3.1.5(default) vile/9.2(default)
hs2/2.26(default) xilinx/3.1i
java/1.3(default) xilinx/3.3i(default)

------------------ /usr/local/Modules/modulefiles/projects -------------------
project1 chip1 chip2

------------------ /usr/local/Modules/modulefiles/groups ---------------------
common fpga sim syn

------------------------ /usr/local/Modules/versions -------------------------
3.1.0 3.1.2

-------------------- /usr/local/Modules/3.1.2/modulefiles --------------------
dot module-info modules null use.own

Note: The versions followed by (default) are the ones specified in the corresponding .version
file.

To load a modulefile:

% module load dc_shell

To see which modulefiles you have loaded:

% module list
Currently Loaded Modulefiles:
1) modules 4) tcl/8.2 7) vile/9.2 10) dc_shell/2000.11
2) common 5) perl/5.6.0 8) emacs/20.7
3) netscape/4.08 6) lsf/4.0.1 9) ewhitney

And to remove a modulefile from your environment:

% module unload dc_shell

SNUG Boston 2001 A Modules-Based Design Environment 9

You can also switch versions, reload the environment, and purge all modulefiles. See the
module(1) man page for more information.

3.6 Designing modulefiles
The Modules package extends standard Tcl by adding some basic shell-like commands that are
designed specifically to address environment variable management. These extensions include;
setenv, prepend-path, append-path, and remove-path. With these extensions, we can manage the
environment without the need for complicated awk and sed commands or other clumsy scripts.
Here is an example of a simple modulefile for Design Compiler:

#%Module1.0
###
##
dc_shell Modulefile
by Mark Sprague
##
proc ModulesHelp { } {

puts stderr "\tdc_shell - loads the environment for dc_shell\n"
}

module-whatis "loads the environment for dc_shell"
setenv SYNOPSYS /tools/synopsys/dc/2000.11
prepend-path LD_LIBRARY_PATH $env(SYNOPSYS)/sparcOS5/dcm
prepend-path PATH $env(SYNOPSYS)/sparcOS5/syn/bin
set-alias syn_help "acroread /tools/synopsys/sold/2000.11/top.pdf"

This example includes some basic module help information, sets the SYNOPSYS variable and
adds the appropriate settings to PATH and LD_LIBRARY_PATH. It also shows an example of
how to create a shell alias to invoke the online docs.

3.7 Creating Projects and Groups
Now that we have the infrastructure, we can complete the environment by adding projects and
groups to the picture. Being able to access tools with a common interface is convenient but
Modules is much more powerful than that. Suppose you have several projects going on
simultaneously and you want to make sure that the correct version of every tool for every project
is maintained. Furthermore, you would like the flexibility of adding new tools or new version of
a tool without causing any ongoing work to be affected. Here’s where the project and group
modulefiles come in handy. Here is an example of a modulefile for a typical chip project:

#%Module1.0
###
##
Sample project Modulefile
by Erich Whitney
##
###

proc ModulesHelp { } {

puts stderr "\foo - loads the project environment for project foo\n"
}

SNUG Boston 2001 A Modules-Based Design Environment 10

module-whatis "loads the project environment for project foo"

#
Put the path to your project's Verification Environment here
#
setenv VSRC_HOME /data/vsrc/foo
#
Put the default version for each of your tools here:
#
setenv VCS_DEFAULT 6.0
setenv DC_DEFAULT 2000.11
setenv PT_DEFAULT 2000.11

By default, when a modulefile is loaded, the module search path is traversed and the first
modulefile with the given name is used. If a hierarchical tool/version name is given (such as
dc_shell/2000.11) then that specific version must be matched. However, if only the first level
tool-name is given and there are multiple versions (like dc_shell/1999.10, dc_shell/2000.05
etc…) then Modules will pick the first one alphabetically. This may or may not be what you want
depending on how you set up your modulefile naming convention. There is an explicit way to tell
Modules which version you want to be the default. This is done with a .version file which is
placed in the directory along with the modulefile. Here is a simple .vedrsion file you might put in
your dc_shell modulefile directory:

#%Module1.0

set ModulesVersion "2000.11"

Now any time someone issues the command:

% module load dc_shell

They will always get version 2000.11. However, this may not be what you really want. Suppose
project X is using version 2000.05 and project Y is using version 2000.11. One will have to
explicitly call out their version while the other could rely on the default. This is a dangerous
situation that should be avoided. A simple solution to this problem is found by making a minor
change to the .version file as shown below:

#%Module1.0

if [info exists env(DC_DEFAULT)] {
set ModulesVersion $env(DC_DEFAULT)

} else {
set ModulesVersion "2000.11"

}

Now if you look back at the project modulefile shown above, you’ll see the variable
DC_DEFAULT set to “2000.11”. Each project can explicitly set which version of DC that is
required and nobody has to remember to type the version number on the command line. Project
X will get 2000.05 and project Y will get 2000.11 (assuming they set their DC_DEFAULT

SNUG Boston 2001 A Modules-Based Design Environment 11

variables appropriately). The advantage to method this is that it can be centrally maintained and
put under RCS control.

What happens if a tool needs to be changed? First you can edit the modulefile to give an
informational message notifying the users of an upcoming change and they will get this message
the next time they load that modulefile. Modules also has some logging facilities so you can track
a tool’s usage and this information can be used to determine if and when an older tool may be
removed or archived from the system. If a tool is removed, however, the modulefile can be
modified to give an informational message telling the user that they’ll have to go back to the
archives, which is certainly more pleasant than, “Sorry, command not found!”

When a user sits down to do their work, they typically have to use several tools. From a Modules
perspective, each tool should be maintained in a separate directory with its own modulefile thus
making maintenance easier, but from the user’s perspective, all they want to do is open up a shell
and start working. This is where the group modulefile comes in handy. Here’s an example group
modulefile for doing synthesis:

#%Module1.0
###
##
Synthesis Environment Modulefile
by Erich Whitney
##
###

proc ModulesHelp { } {

puts stderr "\tsyn - loads the synthesis environment\n"
}

module-whatis "loads the synthesis environment"

module load dc_shell primetime

This file in conjunction with the project and tool modulefiles described above, makes the job of
starting up the environment this easy:

% module load my_project syn

Now you can start making gates!

4 Multi-platform Support
The next step to building the environment is adding multi-platform support. Before going in to
those details, here’s a summary of how the environment works from user login to the shell
prompt.

4.1 Starting a shell
In the environment we have presented, the user only has one initialization file. This is either
.cshrc, .bashrc, or .profile, depending on their choice of login shell. In that file, the Modules init

SNUG Boston 2001 A Modules-Based Design Environment 12

script is called which sets up Modules. At this point, the control passes back to the user’s
initialization file. The environment is then examined to determine if this is a login from scratch
or just a new shell starting up. If this is a fresh login, the default modulefiles, the user’s personal
modulefiles are optionally loaded and initialization is complete. If this is a shell that has been
invoked from a parent shell, then the environment is inherited from that parent shell.

This is the point where multi-platform support needs to considered. If a child shell inherits all of
its environment variables from the parent, then the possibility exists that some of those variables
are platform-specific. If the users starts up a shell on a different platform from the parent shell, as
is the case when using LSF, then it is likely that the environment will not be correct for the child
shell.

With Modules, this problem is easily solved by performing a simple check in the user’s
initialization file for the existence of the “LOADEDMODULES” environment variable. This
variable contains a list of all the modulefiles that are currently loaded in the user’s environment.
If this variable is defined during shell initialization, then all we have to do to update the
environment is issue the “module update” command instead of “module load” and Modules will
go through the list and reload the correct environment for the platform where it is being executed.

4.2 How does Modules work on multiple platforms?
At this point you might be inclined to think that the entire problem is solved and you can go on
your merry way. But wait! There is one key piece of information missing from the story thus far.
How does Modules know which platform it is running on and what to do about? This is where
things start to get interesting.

Solving this problem is a bit like the old “chicken and the egg” riddle. You need to know what
platform you are on before you load the modulefiles, but you need something in your modulefile
to help you determine the platform. From the Modules perspective this problem is solved by the
fact that Modules itself is started up by a shell script and you’ve had to build Modules for each
platform on your network. Now you could modify the Modules startup scripts to set some
variables and that tell you what platform Modules is running on but there is another way.

Our solution to this problem is to create a single modulefile that everyone in our environment
must use. The obvious choice is the “modules” modulefile itself since everyone uses that
modulefile anyway. There is a version of the “modules” modulefile that is built for you by the
installation process. This file can easily be edited to add the commands necessary for multi-
platform support. If you examine the man page for Modules, modulefiles(1), you will see the
Module command “uname”. This version of “uname” is a platform-independent command that
Modules has implemented to assist in multiple platform support.

The “uname” command has options that return the machine type, machine name, operating
system revision, etc. You need to experiment a bit with this command to determine the options
required to properly distinguish the platforms in your environment. Here is an example of the
lines you would add to your “modules” modulefile:

SNUG Boston 2001 A Modules-Based Design Environment 13

setenv MODULES_MACH [uname machine]
setenv MODULES_OS [uname sysname]
setenv MODULES_REL [uname release]

On a Sun Sparc-10 running Solaris 7 you will get:

% printenv | grep MODULES_
MODULES_MACH=sun4u
MODULES_OS=SunOS
MODULES_REL=5.7

4.3 Creating multi-platform modulefiles
The next thing to do is make sure that everyone gets these variables. You can insert “module load
modules” in the user’s initialization script. It is also a good idea to add a “prereq modules” line to
each of your modulefiles that uses these variables. This will make your environment more robust
and help to debug problems.

With these variables set in your environment, the typical modulefile changes slightly in that it has
to determine which platform it is running on before setting the path. Here is a simple example
showing how to improve our dc_shell modulefile to support Solaris and HP:

#%Module1.0
###
##
dc_shell Modulefile
by Mark Sprague
##
proc ModulesHelp { } {

puts stderr "\tdc_shell - loads the environment for dc_shell\n"
}

module-whatis "loads the environment for dc_shell"

setenv SYNOPSYS /tools/synopsys/dc/2000.11
switch –exact $env(MODULES_OS) {

SunOS {
set plat “sparcOS5”
}

HPUX {
set plat “hpux10”
}

default {
puts stderr “Error: Platform for OS $env(MACHINE_OS) not supported”
exit
}

}
prepend-path LD_LIBRARY_PATH $env(SYNOPSYS)/$plat/dcm
prepend-path PATH $env(SYNOPSYS)/$plat/syn/bin

set-alias syn_help "acroread /tools/synopsys/sold/2000.11/top.pdf"

NOTE: If you are using the HP platform, check the return value of “uname sysname” for the
correct string to use in the switch statement shown above.

SNUG Boston 2001 A Modules-Based Design Environment 14

4.4 Multi-platform support for VCS and ACS
As it turns out, VCS supports multiple platforms already. The only issue you need to be aware of
is building the correct “simv” executable for each platform. Most verification environments use
some type of Make facility to build the simulation executables. If you use Modules to set up your
path correctly, as shown above, then you will be able to support simulations on all of your
machines.

On the other hand, ACS is a little bit more tricky. If you read the ACS User Guide you will find
the “acs_dc_exec” and “acs_bs_exec” variables described in the section on customization. On
the surface it would appear that these variables would allow you to properly choose which
executable to call from ACS to run Design Compiler and Budget Shell. Unfortunately, ACS
expects these variables to point to an executable during the preparation phase. This means that if
you do an “acs_compile_design –prepare_only” on a Sun workstation and then try to submit the
compile jobs to an HP machine, the Makefile will attempt to execute a Sparc binary on an HP
machine with undesirable results. Using Modules, provides a trivial solution to this problem!

If we set up our dc_shell modulefile as shown above, then all we need to do to get the correct
version of Design Compiler for whatever platform we are running on is:

% module load dc_shell
% dc_shell…

And if we’re using LSF to run Design Compiler for us, all we need to do is:

% module load dc_shell
% bsub dc_shell…

What do we need to do to get ACS to work in our Modules environment? First look at how ACS
calls Design Compiler. ACS looks at the “acs_dc_exec” and “acs_bs_exec” variables at runtime
and determines if whatever the variable is set to is executable. ACS wants to see an explicit path
to the Design Compiler executable. But in our Modules environment we just need to call
“dc_shell” and the environment will do the rest. The answer is a simple wrapper script simply
calls “dc_shell” with the same arguments and doesn’t require an explicit path. Here is an
example:

Create the following two scripts (don’t forget to chmod +x the files):

/tools/scripts/dc_wrapper.sh:

#!/bin/sh
dc_shell $*

/tools/scripts/bs_wrapper.sh:

#!/bin/sh
budget_shell $*

SNUG Boston 2001 A Modules-Based Design Environment 15

And add the following lines to your .synopsys_dc.setup file:

set acs_dc_exec /tools/scripts/dc_wrapper.sh
set acs_bs_exec /tools/scripts/bs_wrapper.sh

Now ACS will happily call your wrapper scripts

5 What about license management?
Strictly speaking, Modules doesn’t do anything for you with licenses. But licensing is an
important part of building a complete environment. We solve the licensing problem with LSF
since licenses are shared resources like CPUs, disks, memory, etc.

LSF doesn’t manage your EDA licenses straight out of the box. We have configured our LSF
installation as follows:
1. Create an ELIM file that creates a resource for each license we need to track. This script tells

LSF how to check the license manager for the availability of a license and tracks the license
usage within an LSF internal variable.

2. Create a set of queues for users that associates each tool (and license) with a class of
machines capable of running that tool.

3. Users submit jobs into the queues for that tool which allows LSF to manage the license
resources for all users.

This system works well as long as everyone uses it. If users insist on bringing up tools and
grabbing licenses without using LSF, then it is possible that jobs in the LSF queue will not get
the licenses they need when they run. This can be combated by adding LSF job-starter scripts,
and other such techniques that are outside the scope of this paper.

6 Conclusions and Recommendations
As has been shown, using Modules to build your environment will solve most of the common
problems with building and maintaining a design environment. Of course, modulefiles can be
written that don’t solve the problems.

In order to allow Modules to work efficiently, there are a few guidelines that need to be followed:

• Implement a well-defined directory structure.
• Create modulefiles for every tool in your environment.
• Construct your modulefiles to be platform-aware

Another aspect of creating a design environment is to encourage the use a distributed resource
management (DRM) tool, like LSF, to manage all of your compute resources. Once users are
accustomed to pushing all jobs through a DRM, there will be fewer license related issues.

Finally, why is this dragging your environment into the 90’s? Modules was developed at Sun,
and was originally presented in 1991. However, it’s visibility into the hardware design
community has been limited, even though it solves many of the environment issues that are

SNUG Boston 2001 A Modules-Based Design Environment 16

frequently encountered. Some CAD tool providers, including Synopsys, use Modules internally,
but don’t yet provide external support to automatically generate modulefiles when a release is
installed.

7 Acknowledgements
We would like to thank John Mincarelli from Synopsys for his contribution to this paper. It was
through John that we ultimately found out about Modules and his work at Synopsys was one of
the inspirations for writing this paper. We would also like to thank Bob Gill of Axiowave for his
help in setting up Modules on the system and for beating our Tcl installation into submission.
Additional thanks goes out to John Furlani for his help in obtaining the original papers on
Modules.

8 References
[1] John L. Furlani, “Modules: Providing a Flexible User Environment”, Proceedings of the Fifth
Large Installation Systems Administration Conference (LISA V), pp. 141-152, San Diego, CA,
September 30 – October 3, 1991.

[2] John L. Furlani, Peter W. Osel, “Abstract Yourself With Modules”, Proceedings of the Tenth
USENIX System Administration Conference (LISA X), pp. 192-201, Chicago, IL, September 29 –
October 4, 1996.

[3] John K. Ousterhout, Tcl and the Tk Toolkit, Addison Wesley Publishing Company, Inc.,
ISBN 0-201-63337-X, 1994.

Appendix A: Source file locations
The Modules package can be found at ftp://modules.sourceforge.net/pub/modules.

TCL or TCLPro can be found at www.scriptics.com.

For information regarding LSF, contact Platform Computing (www.platform.com).

Appendix B: .profile file
#
if [“${USER:-}” = “”]; then

export USER=`/usr/ucb/whoami`
fi
loginshell=`ypcat passwd | grep $USER | awk -F: '{ print $NF }'`
loginshell=`basename $loginshell`
export HOSTNAME=`hostname`
export DEFAULT_MODULES="modules common perl lsf"
#
Set mver to the desired Modules version
#
mver=3.1.2
case "$loginshell" in
bash)

minit=/usr/local/Modules/$mver/init/$loginshell;;
[kz]sh)

SNUG Boston 2001 A Modules-Based Design Environment 17

minit=/usr/local/Modules/$mver/init/$loginshell;;
*)

minit=/usr/local/Modules/$mver/init/sh;;
esac

#
This code should only execute if you're starting from scratch
Otherwise, reload the environment
#
if [-f $minit]; then

. $minit
if ["${LOADEDMODULES:-}" = ""]; then

module use /usr/local/Modules/modulefiles/groups
module use /usr/local/Modules/modulefiles/projects
module use /usr/local/Modules/modulefiles/tools
module unuse /usr/local/Modules/modulefiles
module load ${DEFAULT_MODULES}

else
module update

fi
else

echo "Modules not supported on this system"
fi

If the user has additional customizations

case “$loginshell” in
bash)

if [-f ${HOME}/.bashrc_custom]; then
. ${HOME}/.bashrc_custom

fi;;
*)

if [-f ${HOME}/.profile_custom]; then
. ${HOME}/.profile_custom

fi;;
esac

Appendix C: .bashrc file
#
export HOSTNAME=`hostname`
export DEFAULT_MODULES="modules common perl lsf"
#
Set mver to the desired Modules version
#
mver=3.1.2
minit=/usr/local/Modules/$mver/init/bash

if [“${USER:-}” = “”]; then
export USER=`/usr/ucb/whoami`

fi
#
This code should only execute if you're starting from scratch
Otherwise, reload the environment
#
if [-f $minit]; then

. $minit
if ["${LOADEDMODULES:-}" = ""]; then

module use /usr/local/Modules/modulefiles/groups
module use /usr/local/Modules/modulefiles/projects
module use /usr/local/Modules/modulefiles/tools

SNUG Boston 2001 A Modules-Based Design Environment 18

module unuse /usr/local/Modules/modulefiles
module load ${DEFAULT_MODULES}

else
module update

fi
else

echo "Modules not supported on this system"
fi

If the user has additional customizations

if [-f ${HOME}/.bashrc_custom]; then
. ${HOME}/.bashrc_custom

fi

Appendix D: Installation Notes
When we started this paper, we used Modules version 3.1.0. We subsequently installed and
tested version 3.1.2. The 3.1.0 release has some bugs related to “module unload” and hierarchical
modulefile names as well as at least one fatal that we have seen. The 3.1.2 release appears to
address these issues.

Here are some notes on what we had to do to get Modules to build in our environment. You may
or may not have to do these steps depending on how your environment was setup.

1. We needed to install TclPro1.4 from dev.scriptics.com in order to get this to build properly.

TclPro1.4 includes Tcl/Tk 8.3 that we needed to build Modules. It is installed by
downloading the tar.gz from scriptics.com, extracting it and running the resulting setup.sh
file. We installed the software under /usr/local/tclpro. Note that part of TclPro1.4 is a
licensed product which means you should read the license agreement. It may be possible to
configure Tck/Tk8.3 another way.

2. It was necessary to edit RKOConfigure in the source directory, set TCLTKROOT to
/usr/local/tclpro and change --with-tcl-libraries to be $TCLTKROOT/solaris-sparc/lib (it is
normally $TCLTKROOT/lib). Also, you may need to edit the location of the X11 directory.
On Linux, for example, it needs to point to /usr/local/X11R6. If you read the INSTALL file in
the Modules distribution it recommends running RKOConfigure and I would recommend it
as well since there are too many options to ‘configure’ to remember.

3. Next run RKOConfigure (./RKOConfigure). It produces the Makefile.
4. Edit the Makefile, search for LIBS line and change "-tcl " to "-tcl8.3" (again no quotes). This

step wasn’t necessary for the Linux build.
5. Run "make".
6. Run "make install".

