
Modules: Providing a Flexible

User Environment

John L. Furlani

June 29, 1991

ABSTRACT

Typically users initialize their environment when they log in by setting environment
information for every application they will reference during the session. The Modules package is
a database and set of scripts that simplify shell initialization and lets users easily modify their
environment during the session.

The Modules package lessens the burden of UNIX environment maintenance while providing a
mechanism for the dynamic manipulation of application environment changes as single
entities. Users not familiar with the UNIX environment benefit most from the single command
interface. The Module package assists system administrators with the documentation and
dissemination of information about new and changing applications.

This paper describes the motivations and concepts behind the Modules package design and
implementation. It discusses the problems with modifying the traditional user environment and
how the Modules package provides a solution to these problems. Both the user’s and the system
administrator’s viewpoint are described. This paper also presents the reader with a partial
implementation of the Modules package. Sample C Shell and Bourne Shell scripts with
explanations are used to describe the implementation. Finally, an example login session
contrasts the traditional user’s environment with one that uses the Modules package.
Introduction

Typically, when users invoke a shell, the
environment is initialized with the settings for every
application they might access during a login session.
This information is stored in a set of initialization
files in each user’s home directory. Over time, these
files can incur numerous and relatively complex
changes as applications move and new applications
become available. Since each user has his own
initialization files, keeping these files current with
system-wide application changes becomes difficult
for both the user and the system administrator. In
this model, the user often makes environment
changes during a login session by modifying the
initialization files and then re-initializing the shell.

The Modules package provides a way to simplify
this process.1

The Modules package is a set of scripts and
information files that provides a simple command
interface for modifying the environment. Each
module in the Modules package is a file containing
the information needed to initialize the environment
for a particular application (or any environment
information). From a user’s perspective, the package
supplies a single command with multiple arguments
that provides for the addition, change, and removal

1. Capitalized Modules refers to the package as a whole. Refer-

ences to a module file itself are uncapitalized. References to the

module(1) command use italics with the man page reference.
1

The Design of the Modules Package
of application environment information. From the
administrator’s point of view, the environment
information is documented and maintained in one
location with each module encapsulating one
application’s information. Thus, it is easier for the
system administrator to add new applications and
ensure that the necessary environment for the
application is correctly installed and maintained by
the end users.

The Design of the Modules Package

The first section describes the motivations
driving the design of the Modules package. The
second section presents an overview of the design.

Design Motivations

Help alleviate the burden of UNIX environment
maintenance for users.

The UNIX environment is cumbersome for even
experienced users. Users not familiar with UNIX are
both baffled and troubled by the complexity of
environment maintenance. The Modules package
attempts to ease this maintenance by encapsulating
environment information and providing a single
command for environment modification.

Ease the dissemination of information and documentation
of new software.

The amount of information an administrator
must convey about a new application can be large.
Many variables may need to be changed for each
new application. Because each module is
self-documenting, the information is readily
available for reference by users.

Make it simple to change the environment numerous times
during the login session.

The amount of effort involved with adding
environment information as applications are needed
stops users from managing their environment
dynamically. Using a new application requires
looking up the necessary environment modifications,
making the appropriate modifications, and finally
invoking the command. Thus, it is usually worth

initializing the environment with the information for
every application when the shell is invoked. But if
adding the environment for a new application is as
simple as typing a single command, the balance
turns in favor of adding to the environment just
before accessing a new application.

Decrease dependency on servers when the applications on
those servers are not needed.

When a directory is added to the search path, a
dependency on the server containing this directory is
added as well. If this server goes down, the user
must wait for the server to return even though, in the
case of an unnecessary directory, he doesn’t need
access to the directory to complete his work.

Manage the difficulties associated with frequently
switching between different application releases.

Switching between two releases of the same
software is simplified by making it easier to swap the
two applications’ environment information.

Design Overview

The Modules package should be simple to use.
Therefore, it employs a single command interface,
very similar to that of the sccs(1)[1] command. A
single command with the ability to provide help is
both easy to remember and simple to use.

For the Modules package to assist a system
administrator, it should save time spent maintaining
environments as well as installing and documenting
the use of new applications.

The package must be flexible enough to
accommodate any situation an application might
require. It must meet the user’s needs in different
ways. Some users will use the module(1) command to
manipulate most of their environment. Other users
will use it sparingly as an easy way to try new or
rarely used applications. In addition, the package
should permit experienced users to tailor it to their
needs.

Finally, the solution must be shell-independent.
The interface should be the same regardless of which
shell the user chooses.
2 Modules: Providing a Flexible User Environment

Problems with Traditional Shell Initialization
Problems with Traditional Shell
Initialization

This section describes some of the difficulties
with traditional shell initialization as viewed by the
user and by the system administrator.

The User’s Viewpoint

Maintaining shell start-up files can be difficult
and frustrating for the user because he lacks interest
or UNIX® knowledge. Since modification is generally
required when a new application is installed,
maintaining start-up files can be demanding and
time consuming in very dynamic or large UNIX®
environments.

When shell start-up files are used, the
environment can become cluttered with unnecessary
information. Information for every application,
whether or not it will actually be referenced during
the current session, is loaded into the shell. For the
user to execute applications at the command line
without using full pathnames, the search path could
be very long.

When using an automounter[2], the system not
only searches a longer path, but must remount
infrequently referenced directories to search them. In
addition, if a directory in the search path is on a
server that goes down, the shell will hang trying to
search that directory. Thus, the time needed to detect
a “command not found” or to find programs toward
the end of the search path is drastically increased.
Shells that have path caching help this problem
immensely, but a number of shells and users do not
have or use path caching. It is best if a small path
containing only the most used directories is set at
initialization and supplemented just before a new
application is used.

Switching between different versions of an
application is usually difficult “on the fly.” First, the
user must know which environment variables to
reset and then must enter the explicit shell
commands to change the variables. Finally, the user
must modify the search path to remove the old path
and to add the new path. This is a cumbersome and

time consuming process that restricts the flexibility
of changing between different software versions.

Accessing a new application is difficult when it
requires a change in the user’s environment. If the
application is for temporary use, the user accesses
the application by changing the environment in the
current shell. If it’s a long-term addition to the user’s
set of applications, the user edits the shell
initialization files and the shell is re-initialized.
Novice users often don’t know how or don’t want to
know how to modify their environment to use the
new application.

The System Administrator’s Viewpoint

A system administrator currently announces the
installation of a new application via e-mail or a note
in /etc/motd. Usually, the notice contains a full
description of the application and the environment
variables that must be set to use the new application.
Some users do not understand what they really need
to do to use an application. This, in turn, causes
numerous requests to a system administrator. Novice
users often need a system administrator to help them
modify their start-up files.

At most sites, a logfile or database is maintained
containing the descriptions and quirks of each
application so that the user can set up his
environment to use an application. Maintaining such
a logfile can be time consuming as it can become
very large.

The Modules Package Provides a
Solution

The User’s Viewpoint

Although shell start-up files are still necessary,
maintaining them is easier with the Modules
package. The user is provided with two options:
modify the start-up files directly, or use the module(1)
command to modify them.

Changing start-up files is simpler with the
Modules package. The user only has to add new
arguments to, or remove them from, the module(1)
Modules: Providing a Flexible User Environment 3

Shell Wrappers and Modules
command in his start-up file to add or remove an
application’s environment. Or, if the user prefers, he
can use the module(1) command to add module
names to, or remove such names from, his start-up
file’s module(1) command.

A clean environment is readily maintained since
the Modules package makes it easy to dynamically
modify the environment. A minimum of
environment information is initialized at start-up,
and an application’s environment is added only
when needed. Response time is improved because
search paths are much shorter on average.

The Modules package is optimum for the
windowing environment under which many UNIX
users work. For example, a user only loads the
window system module during the login
initialization. Then, in a shell window, the user uses
the module(1) command to initialize the environment
just prior to accessing a new application.

If the path to an application changes, the change
will be masked by the Modules package. For
example, a user loads a module named ‘openwin’ to
use OpenWindows[3] even if its access path has
changed. For the user, no environment or start-up
file modification is required.

To switch between different releases, the user
simply changes predefined modules. The old
module is swapped out, and the new one is loaded in
its place, even during the login session.

The Modules package will help inexperienced
UNIX users manage their environment. They must
learn a single command for manipulating their
environment. This is opposed to having to
thoroughly understand the quirks of setting a UNIX

environment.

The System Administrator’s Viewpoint

The Modules package eases the dissemination of
information about a newly installed application: only
the module name must be announced. If users want
to use the new application, they use the module(1)
command to add the announced module. Any users
who don’t use the Modules package can acquire the

information needed to set their environment from
the module file itself.

Each module is self-documenting. Users either
access this information via the module(1) display
command or view the module file itself. In general, a
logfile or database still needs to be maintained, but
only the module name is listed for each application.
Thus, when a user wants to use an application, the
database references a module name that contains the
current environment information. The user either
loads this module directly or gets the environment
information from the module and manually
incorporates it into the environment.

Shell Wrappers and Modules

Shell wrapper scripts setup environment
variables for a certain application when a command
for that application is invoked. For each application,
the system administrator creates a wrapper script
and a symbolic link to the script for each command
in the application. The Modules package can
augment a wrapper script scheme or be used in place
of wrapper scripts.

With wrapper scripts, users still add the
directory containing the symbolic links to their
search path in order to use the application. In this
case, the Modules package augments the wrapper
scheme by helping the user manage the search path.

One solution for managing the search path is
creating a directory of symbolic links to all of the
wrapper scripts. In this case, the user only adds one
directory to his search path to access every
application. Moving an application requires that
every symbolic link for that application change.
When many applications are installed, this directory
can quickly become overwhelming and
unmanageable. Documenting and finding programs
in such a directory is difficult and often not very
clean.

The Modules package provides the user with a
lot of flexibility by differentiating between user and
system module files. Like wrapper scripts, the
4 Modules: Providing a Flexible User Environment

The Modules Package Implementation
Modules package can encapsulate environment
details from the user.

The Modules Package Implementation

The Modules package has been implemented for
both the C Shell and Bourne Shell dialects. This
section describes some of the implementation details.

Modules Initialization

The Modules package is initialized when a user
sources a site-wide accessible initialization script.
This file is shell dependent and is usually done in a
user’s .cshrc or .profile upon each shell invocation.

This Modules initialization script defines a few
environment variables. MODULESHOME is the
directory containing the master module file and the
master command scripts. MODULEPATH is a standard
path variable that is searched to find module files.
MODULESHOME should always be a part of this path.
The _loaded_modules variable contains a space
separated list of every module that has been loaded.
All of these variables are exported so that the shell’s
children will have the same information and be able
to keep track of currently loaded modules.

This initialization script sets up the module(1)
command. This command is an alias or a function
depending upon which the shell supports
(see Figure 1).

FIGURE 1. module(1) Command Initialization

Environment Modification

Because a process is unable to modify the
environment of its parent, the Modules package
sources scripts into the current shell.

The Modules package should not alter any part
of the environment besides the variables
documented in the init-script or the module files
themselves. When a script is sourced into the current
shell, it has the potential to change existing user
variables. This “feature” permits the Modules
package to work, but it presents a pitfall that the
package must take into account. The main concern is
the module(1) command because it uses a large
number of variables to implement its sub-
commands.

A couple of precautions have been taken to avert
the possibility of variables being changed or
destroyed by the module(1) command. The first
precaution is the choice of variable names used by
the module(1) command. All of the names are
proceeded with an underscore and are all lowercase.
The use of underscores should stop most variable
conflicts. It does, however, leave room for a user
variable to be changed by the module(1) command.
So, a check for possible variable conflicts is made
when the bulk of the script is sourced. If a conflict
arises, the user is notified.

The problem of changing existing variables
could be eliminated by running module(1) as a
subshell and sourcing the return values. I found this
has an unacceptable response time for the problem
being addressed. If users run into variable conflicts,
they can set an option telling the module(1) command
to run the script in a subshell and source the script’s
output (this code is not in Figure 1).

Since the Modules package is designed to
abstract environment information from the user, it
must be concerned with environment dependencies
and conflicts between different applications and
different versions of the same application. For
example, the environment for two versions of the
same application should not be loaded at the same
time. Along the same lines, some applications (like
Sun’s AnswerBook[4]) are dependent upon other
applications (OpenWindows[3]). Possible conflicts

##
module(1) User Command as Function
##
module() {
 _module_argv="$*"
 . $MODULESHOME/.module.sh
 unset _module_argv
}

Modules: Providing a Flexible User Environment 5

Implementation of Internal Module File Functions
and dependencies are put into the module files
themselves and detected by the module(1) command.

Shell Independence

The Modules package is shell-independent
because the interface is independent of the currently
executing shell. To ease administration, the module
files are shell independent as well. Thus, only one
copy of an application’s environment information is
maintained.

A number of functions or aliases are set up by
the module(1) command. Each module calls these
functions to accomplish specific, well defined tasks.
For example, the _set_environ task is responsible for
setting an environment variable. This is a line from
an “openwin” module file.

_set_environ OPENWINHOME /depot/openwin

Here, OPENWINHOME is initialized to /depot/
openwin[5].

System Module Files and User Module Files

Through the MODULEPATH environment variable,
users can specify module directories to be searched
before or after the site-wide directory. Thus, a
distinction is made between “system modules” and
“user modules.”

System modules are maintained by the system
administrator and contain the default initialization
information for packages that are installed on the
network. User modules, created by the user, are
either derivatives of the site-wide modules or are
new modules that are specific to the user’s needs.
This arrangement provides the user with the same
power as the system-wide modules provide to easily
change the environment “on the fly.”

Implementation of Internal Module File
Functions

This is the set of internal functions called by the
module files themselves. These functions change
paths and set variables, aliases, and dependencies.

prepend*path and _append_*path

Sometimes an application’s path should be
prepended to a search path. Other times it should be
appended to a search path. The Modules package
makes this distinction in the application’s module
file. The path modification functions are currently
implemented to modify the PATH, MANPATH,
MODULEPATH, and LD_LIBRARY_PATH environment
variables. See Figure 2 for an example of how the alias
and function to append the MANPATH variable is
implemented.

FIGURE 2. _append_manpath Alias and Function

rm*path

The _rm_path functions remove the directory,
given as an argument, from their associated path. As
with the append and prepend path functions, they’re
currently defined for the PATH, MANPATH, MODULEPATH,
and LD_LIBRARY_PATH environment variables.
Currently, awk(1)[?] does most of the work of
removing and recreating the path.

When the user requests that a module be
removed, the _rm_flag is set in a higher level
function. Then, the module is reloaded with this flag
set. Thus, every function that was called when the
module was loaded is called again with the _rm_flag
set (see Figure 2). The same functions that set up the
environment now call their associated _rm_*path
function to remove their environment information.

Bourne Shell Function:

_append_manpath() {
if ["$_rm_flag:-X" = "X"]; then

_rm_manpath $1
else

MANPATH="$MANPATH":"$1";
export MANPATH;

fi
}

C Shell Alias:

alias _append_manpath
'if($?_rm_flag) eval _rm_manpath \!:1;
if(! $?_rm_flag) setenv MANPATH
$MANPATH":"\!:1'
6 Modules: Providing a Flexible User Environment

Implementation of Internal Module File Functions
See Figure 3 for an example of how the function to remove
a directory from the MANPATH variable is implemented.

FIGURE 3. _rm_manpath Function and awk Script

_set_environ

This function is responsible for setting and
clearing environment variables. The code gets more
complex when removing environment variables.

Since environment variables are often used to
define paths to other directories, variables and paths
defined later in a module must be able to reference
these variables even as they are removed. The best
way to describe this problem is with an example
module file (see Figure 4).

FIGURE 4. OpenWindows module File

Here the first variable set is the location of
OpenWindows (OPENWINHOME). This variable is used
to define the path locations as well. If the variable
were removed from the environment before the
paths were removed, it would be impossible to
remove the paths. So, environment variables are not
actually cleared from the environment until after the
module has been removed. Thus, _set_environ simply
adds any environment variables to a list. Upon
completion of reading the module file, the elements
are removed from the environment. See Figure 5 for an
example of how the alias and function defined to set and
unset environment variables are implemented.

FIGURE 5. _set_environ Function and Alias

_prereq and _conflict

Two functions were created to manage conflicts
and dependencies with other module files. The
_prereq function is a list of modules the calling
module must have loaded to run. Similarly, the
_conflict function is a list of modules the calling
module has conflicts with. If more than one module
is listed for these commands, it is treated as an ORed
list. Multiple calls can be used to get an ANDing
effect.

For example, AnswerBook needs OpenWindows
loaded to run. So, it defines the openwin (or
openwin-v3) module as a prerequisite. A conflicting
case would be OpenWindows Version 2.0 with

As Bourne Shell Function:

_rm_manpath() {
MANPATH=`echo $MANPATH |

awk -F: 'BEGIN {p=0}
{

for(i=1;i<=NF;i++)
{

if($i!="'$1'"){
if(p) {printf ":"}
p = 1;
printf "%s", $i

}
}

}'`
 export MANPATH;
}

##
OpenWindows Version 2.0
##
_set_environ OPENWINHOME /depot/openwin
_set_environ DISPLAY `hostname`:0.0
_prepend_newpath $OPENWINHOME/bin/xview
_prepend_newpath $OPENWINHOME/bin
_prepend_manpath $OPENWINHOME/man
_prepend_ldpath $OPENWINHOME/lib

Bourne Shell Function

_set_environ() {
 if ["$_rm_flag:-X" = "X"]; then
 _unset_list="$_unset_list $1"
 else
 eval $1="$2"; export $1;
 fi
}

C Shell Alias

alias _set_environ '
if($?_rm_flag)

set _unsetenv_list =
($_unsetenv_list \!:1);

if(! $?_rm_flag) setenv \!:1 \!:2'
Modules: Providing a Flexible User Environment 7

Implementation of the module(1) Command
OpenWindows Version 3.0. These two modules
should not be loaded at the same time. So, each one
defines the other as a conflict. See Figure 6 for an
example of how the function for conflict management is
defined.

FIGURE 6. _conflict Function

Implementation of the module(1)
Command

Each invocation of module(1) sources a site-wide
script that actually implements the command.
Arguments are passed to the module(1) command
using the _module_argv variable (see Figure 1).

The first argument designates the sub-command
the module(1) command is to execute. Valid
arguments are as follows:

■ Load or Add

■ Remove or Erase

■ Switch or Change

■ Show or Display

■ Initadd

■ Initrm

■ List

■ Available

■ Help

Loading Modules

Loading modules is done by the _add_module
internal function. This function takes any number of
arguments and attempts to load each one as a
module. It traverses the argument list first verifying
that a listed module isn’t loaded already. If it is, the
function prints an error and moves on to the next
name in the argument list (see Figure 7).

FIGURE 7. _add_module() Argument Verification

If the module is not loaded, _add_module begins
looking for the module by searching each directory
specified in the MODULEPATH variable. Once
found, the module is sourced, the module name is

_conflict() {
if ["$_rm_flag:-X" = "X"]; then

return;
fi

_conflict_loaded=0
for _con in $*; do

for _mod in $_loaded_modules; do
if ["$_mod" = "$_con"]; then

_conflict_loaded=$_mod
fi

done
done

if [$_conflict_loaded != 0]; then
echo "ERROR: Module conflict"

fi
unset _conflict_loaded

}

_add_module() {
if [$# -lt 1]; then

echo "ERROR: More arguments"
return

fi

for mod in $*; do
_found=0; _cur_module=$mod;
for chkmod in $_loaded_modules; do
if [$mod = $chkmod]; then

_found=1
break

fi
done

if [$_found -eq 1]; then
echo "ERROR: Module is already loaded"
continue

fi
8 Modules: Providing a Flexible User Environment

Implementation of the module(1) Command
appended to the _loaded_modules variable, and if
there are any other arguments, the load process
begins anew (see Figure 8).

FIGURE 8. _add_module() Traverse MODULEPATH and
Load Module

Removing Modules

Removing a module is accomplished by using
the _rm_module internal function, which is very
similar to the _add_module function. Any number of
arguments can be passed to the _rm_module function.
First, each argument is checked to verify that the
module is actually loaded (same code as in Figure 7
except the final if statement indicates an error if the
module is not loaded). If a module is loaded, the
_rm_flag is set and the MODULEPATH variable is
searched. Once a module is found, it is sourced (see
Figure 9).

FIGURE 9. _rm_module() Traverse MODULEPATH and
Load Module

The same functions that are used in loading a
module are used to remove modules. When one of
the functions detects that the _rm_flag is set, it
removes its corresponding piece of environment
instead of adding it (see Figures 2 and 3). Note that
after the module file has been sourced, each variable
in the _unset_list is unset.

Switching Modules

Although this function has not been fully
implemented, I will describe it here. Only modules
that define themselves as compatible with another
module can be switched. The compatibility
information is kept in the module file. If a module
can be switched with another module, it lists that
other module via the _switch function.

Switchable modules are very similar in that their
environments match one another and their modules
follow the same format. The variables that have to be
reset are the same, and the search path changes are
the same as well.

for dir in $MODULEPATH; do
if [-f $dir/$mod]; then

echo "Loading $dir/$mod"
. $dir/$mod

if ["${_load_error:-NotSet" =
"NotSet"]; then

_loaded_modules=
"$_loaded_modules $mod"

export _loaded_modules
unset _load_error

fi

_found=1
break
fi

done
if [$_found -ne 1]; then

echo "ERROR: Module not found"
fi

done
}

_rm_flag=
for dir in $MODULEPATH; do

if [-f $dir/$mod]; then
echo "Removing $dir/$mod"
. $dir/$mod

_loaded_modules=
`echo $_loaded_modules | sed s/$mod//`

export _loaded_modules
_found=1
break

fi
done

if [$_found -ne 1]; then
echo "ERROR: Module not found"

fi

for env in $_unset_list; do
unset $env

done
Modules: Providing a Flexible User Environment 9

Example Sessions
The difference between switching two modules
and the process of removing a loaded one and
loading a new one is that the location of a search
path entry does not change. The append and
prepend functions are used when removing and
loading module files. This process has the possibility
of altering a portion of the search path in relation to
other entries.

Although this sounds restrictive, it is often very
useful because most module switching involves
different versions of the same program.

Displaying Modules

The _display_module internal function
implements the user display and show sub-
commands. If no arguments are provided, it displays
information about every loaded module. Otherwise,
only the modules named as arguments are
displayed. An awk(1) script is used to convert the
information contained in the module file to output
that is visually pleasing to the user.

Changing User Initialization Files

The initadd and initrm sub-commands help the
user add modules to and remove modules from their
shell initialization files. The initialization file is
searched for a comment line placed there by the
module(1) command. Located immediately after this
comment line is a line invoking the module(1)
command. It is this line that is changed according to
the list of modules given to the initadd and initrm
request. If a comment line is not located in the
initialization file and the user is requesting that a
module be added, the comment line and the
module(1) command line is appended to the user’s
initialization file.

Listing Modules

The _list_modules function simply prints out the
current value of the _loaded_modules variable.

Available Modules

Each directory in the MODULEPATH variable is
listed using the UNIX ls(1)[?] command by the
_avail_modules function (see Figure 10).

FIGURE 10. _list_modules() and _avail_modules()
Functions

Help for Modules

Two levels of help are provided. Without any
arguments, the module(1) command lists the available
sub-commands. With ‘help’ as the only argument, it
provides more complete description of the Modules
package. If a second argument, the name of a sub-
command, is provided, the module(1) command
displays help about the sub-command.

Example Sessions

Contrast Conventional Style with Modules Style

The examples in Figures 11 and 12 depict how
the same environment modifications are
accomplished with and without using the Modules
package. Specifically, the examples show how a user
would switch from using OpenWindows Version 2.0
to a Development Version of OpenWindows Version
3.0. The keystrokes the user actually types are in
bold. Notice the difference in effort needed to switch
between the two window systems. Also notice the
difference in the length of the search path variables.

_list_modules() {
if ["$_loaded_modules" =""]; then

echo "No Modules Loaded"
else

echo "Loaded: $_loaded_modules"
fi

}

_avail_modules() {
for dir in $MODULEPATH; do

echo $dir":"
(cd $dir; ls)

done
}

10 Modules: Providing a Flexible User Environment

Future Work
FIGURE 11. Conventional Style

FIGURE 12. Modules Style

A More Complex Modules Example

A few more module(1) commands are
demonstrated in Figure 13. Once the user logs in, a
check is made of what modules are currently available.
Then, the ‘lang’ module is displayed to find out what
the module does. Notice that the PATH environment
variable is changed as the module display indicates.
The ‘answerbook’ module is displayed showing how
prerequisites might be used. In this example,
answerbook must have either the ‘openwin’ or
‘openwin-v3’ module loaded before it will load.
Finally, the ‘answerbook’ module is loaded and the
program is started.

system login: jlf
++++++++ CSH Login ++++++++
jlf@system% echo $PATH
/depot/lang:/depot/openwin/bin:
/depot/openwin/bin/xview:/usr/local/bin:
/usr/bin:/usr/ucb:/usr/etc:.:
/depot/frame/bin:/depot/sunvision/bin:
/depot/TeX/bin
jlf@system% setenv OPENWINHOME /depot/openwin-v3
jlf@system% setenv PATH /depot/lang:
/depot/openwin-v3/bin:/depot/openwin-v3/bin/xview:
/usr/local/bin:/usr/bin:/usr/ucb:/usr/etc:.:
/depot/frame/bin:/depot/sunvision/bin:
/depot/TeX/bin
jlf@system% setenv LD_LIBRARY_PATH
/depot/lang/SC1.0:/depot/openwin-v3/lib:/usr/lib
jlf@system% setenv MANPATH /depot/lang/man:
/depot/openwin-v3/man:/depot/sunvision/man:
/depot/TeX/man
jlf@system% openwin

system login: jlf
++++++++ CSH Login ++++++++
Loading /site/Modules/openwin
jlf@system% echo $PATH
/depot/openwin/bin:/depot/openwin/bin/xview:
/usr/local/bin:/usr/bin:/usr/ucb:/usr/etc:.
jlf@system% module rm openwin
Removing /site/Modules/openwin
jlf@system% module add openwin-v3
Loading /site/Modules/openwin-v3
jlf@system% openwin

F

F

t
t
b
s
i
c
c

b
s
m

s
+
L
j
/
X
X
a
d
f
f
j
+
U
P
P
P
j
/
/
j
L
j
/
/
/
j
+
A
P
A
j
L
j

Modules: Providing a Flexible User Environment
IGURE 13. Complex Modules Example

uture Work

Having the Modules package as a set of scripts
hat are sourced into an existing shell helps makes
he interface shell independent. However, it would
e best for performance and cleanliness to have
upport for the Modules package built into the shell
tself. The module commands could be more
omplex without losing any performance over the
urrent version.

Currently, conventional style search paths can be
uilt in an order that doesn’t represent a logical
earch structure. Users are responsible for
aintaining the order of their paths with little or no

ystem login: jlf
+++++++ CSH Login ++++++++
oading /site/Modules/openwin
lf@system% module avail
site/Modules:
11@ init-csh openwin tex
11R4 init-sh openwin-v3 vx-devel
nswerbook lang saber xgl
os local sunvision
rame lotus sunvision-devel
rame-ol mh taac-devel
lf@system% module show lang
+++++++ (/site/Modules/lang Module) ++++++++
nbundled Languages
repend PATH: /depot/lang
repend MANPATH: /depot/lang/man
repend LD_LIBRARY_PATH: /depot/lang/SC1.0
lf@system% echo $PATH
depot/openwin/bin:/depot/openwin/bin/xview:
usr/local/bin:/usr/bin:/usr/ucb:/usr/etc:.
lf@system% module add lang
oading /site/Modules/lang
lf@system% echo $PATH
depot/lang:/depot/openwin/bin:
depot/openwin/bin/xview:/usr/local/bin:
usr/bin:/usr/ucb:/usr/etc:.
lf@system% module show answerbook
++++ (/site/Modules/answerbook Module) +++++
nswerbook Version 1.0
rerequisites(ORed): openwin openwin-v3
ppend PATH: /depot/answerbook
lf@system% module add answerbook
oading /site/Modules/answerbook
lf@system% answerbook
11

Results, Performance Notes
help. The Modules package can provide the user
with the information he needs to build a logical
search path with existing modules.

Work is in progress to increase the grammar
available in the module file. Syntax permitting if-else
statements and path ordering are two examples of
new syntax not described in this paper.

Finally, more options are under development to
provide users with even greater control over how
their environment is constructed by the Modules
package. In some cases, users don’t want a variable
modified when loading a certain module file. For
example, if the OpenWindows[3] dynamic libraries
are already cached using ldconfig(8)[1] the
LD_LIBRARY_PATH should not be modified when
loading the “openwin” module file. Other
configuration and control options are being added
for more experienced users as well.

Results, Performance Notes

The Modules package is quite new and is still
under development. Only a few of our users have
begun working in the Modules’ environment. They
have been very pleased with the package and the
benefits it provides.

Currently, it takes a second or two to load a
module into the current shell. In an effort to improve
this performance, it is possible for the user to specify
that the internal functions remain resident from one
module(1) command to the next. This provides a
marked improvement in speed since the functions
are not being completely redefined upon every
invocation.

Summary

The Modules package provides both the novice
and the experienced UNIX user with a clean
interface to the environment. This interface enables
the user to easily add, change, and remove
application environments dynamically.

John L. Furlani graduated from the University of
South Carolina with a BS in Electrical and Computer
Engineering. he worked as a system administrator at
both USC and the Naval Research Laboratory in
Washington, D.C. during his college years. Upon
graduation, John joined Sun Microsystems
Incorporated as the system administrator for Sun’s
Research Triangle Park Facility in North Carolina.
Reach him at Sun via U.S. Mail at Sun Microsystems
Inc., P.O. Box 13447, Research Triangle Park, NC
27709-13447. Reach him via electronic mail at
sun!sunpix!jlf@uunet.uu.net or via the internet at
John.Furlani@East.Sun.COM

Acknowledgments

Ken Manheimer and Don Libes at the National
Institute of Standards and Technology deserve
special thanks for their help and ideas toward this
paper and some design considerations. Maureen
Chew with Sun Microsystems provided me with a
test environment and many ideas on how to improve
Modules. There are many others that deserve thanks
but too many to list here -- thanks to everyone that
helped.

References

[1] Sun Microsystems Incorporated, SunOS Reference
Manual.

[2] Sun Microsystems Incorporated, “Using the NFS
Automounter”, System and Network
Administration, Chapter 15.

[3] Sun Microsystems Incorporated, OpenWindows
Version 2 Reference Manual.

[4] Sun Microsystems Incorporated, Using the Sun
System Software Answerbook.

[5] Manheimer, Warsaw, Clark, Rowe, “The Depot:
A Framework for Sharing Software Installation
Across Organization and UNIX Platform
Boundaries”, USENIX Large Installation System
Administration IV Conference Proceedings,
October 1990, p. 37-76.
12 Modules: Providing a Flexible User Environment

	Modules: Providing a Flexible User Environment
	John L. Furlani
	June 29, 1991
	ABSTRACT
	Typically users initialize their environment when they log in by setting environment information ...
	The Modules package lessens the burden of UNIX environment maintenance while providing a mechanis...
	This paper describes the motivations and concepts behind the Modules package design and implement...
	Introduction
	The Design of the Modules Package
	Design Motivations
	Design Overview

	Problems with Traditional Shell Initialization
	The User’s Viewpoint
	The System Administrator’s Viewpoint

	The Modules Package Provides a Solution
	The User’s Viewpoint
	The System Administrator’s Viewpoint

	Shell Wrappers and Modules
	The Modules Package Implementation
	Modules Initialization
	FIGURE 1. module(1) Command Initialization

	Environment Modification
	Shell Independence
	System Module Files and User Module Files

	Implementation of Internal Module File Functions
	prepend*path and _append_*path
	FIGURE 2. _append_manpath Alias and Function

	rm*path
	FIGURE 3. _rm_manpath Function and awk Script

	_set_environ
	FIGURE 4. OpenWindows module File
	FIGURE 5. _set_environ Function and Alias

	_prereq and _conflict
	FIGURE 6. _conflict Function

	Implementation of the module(1) Command
	Loading Modules
	FIGURE 7. _add_module() Argument Verification
	FIGURE 8. _add_module() Traverse MODULEPATH and Load Module

	Removing Modules
	FIGURE 9. _rm_module() Traverse MODULEPATH and Load Module

	Switching Modules
	Displaying Modules
	Changing User Initialization Files
	Listing Modules
	Available Modules
	FIGURE 10. _list_modules() and _avail_modules() Functions

	Help for Modules

	Example Sessions
	Contrast Conventional Style with Modules Style
	FIGURE 11. Conventional Style
	FIGURE 12. Modules Style

	A More Complex Modules Example
	FIGURE 13. Complex Modules Example

	Future Work
	Results, Performance Notes
	Summary
	Acknowledgments
	References

