
Modules
Automatic and consistent handling of mod-

ulefile dependencies

Xavier Delaruelle <xavier.delaruelle@cea.fr>

4th EasyBuild User Meeting
February 1st 2019, UCLouvain, Louvain-la-Neuve

xavier.delaruelle@cea.fr

whoami

I am Xavier Delaruelle

Environment Modules project leader since July 2017

Work at CEA, a large research institute in France

In the High Performance Computing (HPC) field

2018 report

Many releases
4.1.0 (2018-01-15), 4.1.1, 4.1.2, 4.1.3, 4.1.4 *in RHEL8*
4.2.0 (2018-10-18), 4.2.1

v4.1 serie has focused on tests and OS support
Code coverage maximized
Validate support for OS X, Solaris, FreeBSD and Windows

v4.2 serie mainly focused on modulefile dependency management

A dive into dependency management enhancements

Consistency

Automation

Modulefile dependency consistency
How to express a dependency?

Requirement: a given modulefile should also be loaded
prereq: bare requirement declaration
module load: requirement declaration + load attempt

Conflict: a given modulefile should not be loaded
conflict: bare conflict declaration
module unload: conflict declaration + unload attempt

Modulefile dependency consistency
Situation prior version 4.2

No real consistency prior v4.2 (like on all other module implementation)

Making requirements consistent

Keep track of the requirements defined by loaded modules

By using an environment variable (MODULES_LMPREREQ)

Check this information when a module unload is attempted to ensure

environment consistency is satisfied

Making conflicts consistent

Keep track of the conflicts defined by loaded modules

By using an environment variable (MODULES_LMCONFLICT)

Check this information when a module load is attempted to ensure

environment consistency is satisfied

By-passing consistency

Use --force switch to by-pass any requirement or conflict

Which results in an environment with some unsatisfied dependency rules

Automated module handling

Automatic management of the dependencies between modulefiles

Set of mechanisms applied when a module is loaded or unloaded

Examples on the next slides are made with automated module handling mode enabled

$ export MODULES_AUTO_HANDLING=1

Module load order matters

A requirement is loaded prior the module which depends on it

So dependent module could adapt its definition when loading

Unload must be done in reverse order to unset in a situation equivalent

than during load

Automated module handling
When loading a modulefile

1 Dependent Reload (unload phase)

2 Requirement Load

3 Load of the asked modulefile

4 Dependent Reload (load phase)

Automated mechanisms in load mode
Dependent Reload

Reload of the modulefiles declaring a requirement onto loaded modulefile

or declaring a requirement onto a modulefile part of this reloading batch

Automated mechanisms in load mode
Requirement Load

Load of the modulefiles declared as a requirement of the loading

modulefile

Automated module handling
When unloading a modulefile

1 Dependent Reload (unload phase)

2 Dependent Unload

3 Unload of the asked modulefile

4 Useless Requirement Unload

5 Dependent Reload (load phase)

Automated mechanisms in unload mode
Dependent Unload

Unload of the modulefiles declaring a non-optional requirement onto

unloaded modulefile or declaring a non-optional requirement onto a

modulefile part of this unloading batch

Automated mechanisms in unload mode
Useless Requirement Unload

Unload of the required modulefiles that have been automatically loaded

for either the unloaded modulefile, an unloaded dependent modulefile or

a modulefile part of this useless requirement unloading batch

Automatically loaded modulefiles are tracked with an environment

variable (MODULES_LMNOTUASKED)

Automated mechanisms in unload mode
Dependent Reload

Reload of the modulefiles declaring a conflict or an optional requirement

onto either the unloaded modulefile, an unloaded dependent or an

unloaded useless requirement or declaring a requirement onto a

modulefile part of this reloading batch

Automated module handling
Further improvements

To complete this work, additional mechanisms should be added
Conflict Unload
Loaded Reload

Evaluate modulefile dependencies ahead of the actual load evaluation

Use SAT algorithm to solve dependencies

Modules 4 and introduced behavior changes

Each new feature introduced that changes exiting behaviors are disabled

by default

To stay in version 4 as long as possible
Feature can be enabled or disabled at various level:

at the ./configure script time (--enable-auto-handling)
with an environment variable (MODULES_AUTO_HANDLING)
with a command-line switch (--auto or --no-auto)

The config sub-command helps to track and set those parameters (new
in v4.3)

$ module config auto_handling 1

So what?

Q: What could be done with these consistency and automation features?

A: Another way to write and organize your build-related modulefiles

Toward a more flexible module naming scheme

Only one modulefile per software-version

Describing its dependencies and especially on what toolchains/flavors it

is available

prereq toolchain/foss18a toolchain/foss18b

At load time, this modulefile checks what dependencies are loaded and

adapt its installation path accordingly

get loaded toolchain name

set tc [string range \

[module-info loaded toolchain] 10 end]

append-path PATH /apps/$tc/$soft-$version/bin

Toward a more flexible module naming scheme
A reduced number of modulefiles

Hierarchy setup

modulefiles/toolchain/foss18a

modulefiles/toolchain/foss18b

modulefiles/toolchain/foss19a

modulefiles-foss18a/app/3.2

modulefiles-foss18b/app/3.2

modulefiles-foss19a/app/3.2

Dependency setup

modulefiles/toolchain/foss18a

modulefiles/toolchain/foss18b

modulefiles/toolchain/foss19a

modulefiles/app/3.2

Toward a more flexible module naming scheme
Other advantages

Free to organize your modulefiles in modulepaths the way you want

Open path for multi-hierarchy

All available modulefiles seen from the start

Toward a more flexible module naming scheme
Small multi-hierarchy example

Toward a more flexible module naming scheme
Things to adapt

Shift the way modulefiles are generated

Today, one modulefile equals to one build

The proposed module naming scheme implies one modulefile

corresponds to one or more builds

Means modulefile has to be updated each time a build is added or

removed

Toward a more flexible module naming scheme
Things to refine on Modules (1)

Add an option for the avail sub-command to filter-out modulefiles not

compatible with loaded modules

$ module avail app

----------- /apps/modulefiles -----------

app/3.2 app/4.1(default)

$ module list

Currently Loaded Modulefiles:

1) toolchain/foss18b

$ module avail --only-compatible app

----------- /apps/modulefiles -----------

app/3.2

Toward a more flexible module naming scheme
Things to refine on Modules (2)

Introduce a Load Compatible mechanism
If no specific version is asked for when loading a given module
Choose one compatible with the currently loaded modules
Instead of the default version

$ module load app

$ module list

Currently Loaded Modulefiles:

1) toolchain/foss18b 2) app/3.2

Shaping future?

Okay, but what is the current module naming scheme trend?

Software hierarchy

A concept popularized by Lmod
Modulefiles are organized into modulepaths relative to the toolchain they have
been built on
Core modulefiles enable the toolchain-specific modulepath at load
Which gives visibility of the available modules for this toolchain
And triggers automatic reload of modules to match the new toolchain instead of the
previous one

As of today, software hierarchy is the best known and supported way to

organize the modulefile tree

A software hierarchy support in Modules?

Software hierarchy is what people are currently asking for

So would go for it to get compatible with what is out there (setup made by

sites and naming scheme supported by tools like EasyBuild)

How to make Modules support software hierarchy?

Treat ”module use” command in modulefile as a dependency

And let it handled by the Dependent Unload and Dependent Reload
mechanisms

A Lmod/Modules comparison (as of January 2019)

Lmod unique features
software hierarchy · modulefile cache · Lua
modulefile support · one name rule · module
auto-swap · inactive modules · depends_on
· path entry priority · advanced version
requirement (>, =, <, ...) · dynamic module
hide · find best module version · pushenv ·
family · i18n · ml · nag message · in-depth
documentation

Modules unique features
modulefile constraint consistency ·
automated module handling · explicit conflict
constraint · modulescript sourcing · virtual
modules · environment direct handling
command · full path modulefile

Next steps: version 4.3

ETA: around March

Restore some features of version 3.2, like the clear sub-command

config sub-command

Colored output

Case insensitiveness

Next steps: version 4.4

ETA: around June

Focussed on Software hierarchy support

Other cool stuff afterward

Modulefile cache

Expiring modulefiles

Sourcing modulescript when changing directory, à la direnv

Support for modulefiles written in Python

module stash à la git, relying on collections

Thanks for your attention

Website: http://modules.sourceforge.net/

Code: https://github.com/cea-hpc/modules

Documentation: https://modules.readthedocs.io

Questions, feedback, new use-cases, want to participate:

modules-interest@lists.sourceforge.net

http://modules.sourceforge.net/
https://github.com/cea-hpc/modules
https://modules.readthedocs.io
modules-interest@lists.sourceforge.net

Commissariat à l’énergie atomique et aux énergies alternatives
Centre de Bruyères-le-Châtel | 91297 Arpajon Cedex
T. +33 (0)1 69 26 40 00 | F. +33 (0)1 69 26 40 00
Établissement public à caractère industriel et commercial
RCS Paris B 775 685 019

DAM
DIF

