
user-setup: A System for Custom
Configuration of User Environments, or

Helping Users Help Themselves
Richard Elling & Matthew Long – Auburn University

ABSTRACT
Large sites often have the problem of too much software, too many users, and not enough
support staff. This paper describes user-setup: an easy to use system which allows users to
customize their environment by selecting their preferred applications. The system is easy to
administer, scales well, and does not limit advanced users. user-setup generates correct by
construction C-shell "dot" files and customized OpenLook Window Manager menus. Thus, a
user can have a personally customized environment that works without having to learn shell
languages, X window manager menu languages, or text editors. The infrastructure is based
upon the Modules package [Furlani91].

Introduction

Typical UNIX shells offer an often bewildering
assortment of options and customizations. The shell
is the most intimate interface between the system
and its users. The shell is also one of the most com-
plicated utilities to configure. Any mistake in the
shell configuration files could render the shell com-
pletely useless. For the naive user, this is often
catastrophic and contributes to the myth that UNIX is
difficult to use. From the administrator’s point of
view, deciding on the perfect shell configuration
becomes increasingly difficult as applications are
added, upgraded, or phased out. For large sites the
concept of editing every user’s shell configuration
file is ludicrous.

user-setup attempts to solve the problem by
allowing the users to select applications for them-
selves. user-setup uses a simple menu interface with
on-line help to guide the user through a list of avail-
able software packages. The user can review the
packages and select those they wish to try. user-
setup generates correct by construction shell
configuration files that give users access to the appli-
cations they desire. Most importantly, users can run
user-setup to safely change their environment at any
time without having to consult the computer center
support staff.

The Problem

Our problem is really one of resources: how to
provide access to the large diversity of applications
for a large number of users in a ubiquitous environ-
ment with a limited support staff.
Too Much Software

There is a lot of software in the universe. It is
not unusual for a single site to have several word
processing, publishing, math, or spreadsheet pack-
ages. In the engineering world, there are dozens of

drafting, modeling, and analysis packages. Worse
yet, many sites support several different window sys-
tems. Some of the packages only work in some of
the window systems or perhaps only certain versions
of the package under certain window systems. In
many cases a new version of the application arrives
which cannot immediately replace the existing ver-
sion due to window system changes, operating sys-
tem changes, or new features. So there may be
several different versions of the same application
which require support.
New Users

New users are perhaps the one true test of any
system. New users often don’t know what a shell is,
what an editor is, what a "dot" file is, what a path is,
or why they should bother with them. Often users
are told to get an account and start using it. A typi-
cal new user will not know what applications are
available or how to gain access to them. A simple
typographical mistake in a shell configuration file
could render the user’s session unusable. Learning
how to recover from a broken shell configuration
should not be the second lesson taught to a new
user. Frantic calls to the help desk are assured if
new users are required to edit shell configuration
files. user-setup solves this problem by creating
correct shell configuration files for the user.
Guidance Conflicts

Guidance conflicts arise when several people
give conflicting instructions to a naive user. For
example, one instructor might require the users to
run an initialization script to setup their environ-
ment. This script will likely conflict with the script
that another instructor requires of the same users.
All users are strongly encouraged to use user-setup
and it has become the only help desk supported
method of changing their environment.

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 215

user-setup: A System for Custom Configuration ... Elling & Long

Dot File Virus
There is a very nasty virus that can spread

among users like wildfire: the "dot file virus." This
virus is easily spread from user to user by such
words as, "to run application ABC, just copy my dot
file." Once a broken dot file virus starts, it can be
very difficult to stop. Meanwhile, dealing with users
bit by it can consume vast quantities of help desk
time. In such cases, the user can always run user-
setup to recreate a stable environment. As long as
the modulefiles are properly maintained and updated,
"dot" file viruses can be virtually eliminated. Now
users say, "to run application ABC, just run user-
setup."

Requirements

The design goal of user-setup is simple: pro-
vide a tool for users which will correctly configure
their environment for whatever application they want
to use. To reach this goal, several requirements
were identified:
User-friendly

First and foremost, user-setup must be user-
friendly. Not surprisingly, user-setup is one of the
first applications run by new users. Since first
impressions are important, we tried to make user-
setup as friendly as possible. The idea was to make
it so easy to use that users would be willing to run it
again at any time to change their environment.
Idiot Proof

Obviously, user-setup must be idiot proof. No
user-setup actions can affect the user’s current
environment. No "dot" files are modified until the
user applies the environment changes. All new "dot"
files are created in a temporary directory and are not
copied into the user’s home directory until they are
completed constructed. All existing "dot" files are
backed up before the new ones are copied. user-
setup must not rely on the current user environment
setup to run. Thus, if the user’s current environment
is totally trashed, user-setup must be able to recreate
a stable, working environment.
Modules Infrastructure

user-setup uses the Modules package as its
infrastructure. A modulefile is created for each
application which contains the configuration informa-
tion needed to run the application. The
configuration information is typically comprised of
changing the PATH, MANPATH, and other environ-
ment variables. The modulefiles are written in Tcl
[Ousterhout90] which allows sophisticated condition-
als and control over the environment changes. An
added benefit of using the Modules package is that
changes can be made to modulefiles which reflect
changes in applications or application availability
without forcing users to run user-setup again.

Low Maintenance
user-setup must be easy to maintain. The ini-

tial configuration of user-setup is relatively simple.
The major portion of the maintenance involves the
modulefiles. At least one modulefile must be
created for each application. By convention, we
include a separate file which contains the application
description. This file can be displayed from the
modulefile. For applications which can be started
via olwm menus, two additional files are required
which contain the menu information. All of these
files are plain ASCII text with revision control by
SCCS. Once the modulefile has been added to the
modules directory structure it is ready to be accessed
by user-setup.
Application Transition

A mechanism must exist to safely transition to
new versions of applications as they become avail-
able and as the old versions are removed. There are
several strategies that can be used by cleverly writ-
ing modulefiles. The modules directory structure is
constructed so that each application is represented by
a directory which has a modulefile for each version.
For example, the X11 application directory may
have modulefiles for R4 and R5. When R4 is
deleted, the R4 modulefile could be rewritten to
notify users of the change, run R5 instead, or even
run user-setup.
Power Users

user-setup must support power users. Power
users are traditionally very leery of anything which
will touch their "dot" files. Power users also tend to
make rather substantial changes to their "dot" files
which they’d like to keep. user-setup provides a
personal customization area in which a user may
place shell commands. The personal customization
area will be copied verbatim into the new .cshrc file.
The personal customization area is located near the
end of the .cshrc file so that any commands placed
there will override the actions of any of the modules.
The approach we take is that user-setup should be so
good that power users will want to use it.
Lost Server Survival

A reasonable fail-safe for when modulefile
servers are down must be included so that a user
will not be thrown into a completely useless state.
Heterogeneous OS Support

user-setup must enable us to provide a con-
sistent environment across major OS releases and
hardware platforms. Applications which are not
available for the current platform must gracefully
inform the user without destroying the user’s session.

Implementation

user-setup (1) is implemented as csh script. It
provides an easy to use, character based, menu
driven interface to the Modules package. Some

216 1992 LISA VI – October 19-23, 1992 – Long Beach, CA

Elling & Long user-setup: A System for Custom Configuration ...

modifications were made to the Modules package
version 1.0 in order to support additional file types
in the Modules directory structure. Once the user’s
environment has been created using user-setup, the
user may make additional changes using module
commands. Most users choose to use user-setup
rather than module commands.
Configuration Files

user-setup was designed to be easily maintain-
able. Besides the modulefiles, only five
configuration files are needed: a default .login file,
prologue.cshrc, default customization, epilogue.cshrc,
and a question order file.
Default .login File

The default .login file is copied into the user’s
home directory unaltered. The .login file is pri-
marily used to start the appropriate window system.
An environment variable is passed to the .login file
to provide the command for starting the desired win-
dowing system. A windowing system will only be
started if the user is logged into the console. It is
not anticipated that a user will modify the .login file
so no provision for keeping changes is provided.
The user’s existing .login file will be moved to
.login.bak.
.cshrc File Prologue

The prologue.cshrc file contains: any environ-
ment settings (e.g., umask, limit, other shell vari-
ables), the Modules package initialization, and the
loaded modulefiles which are edited by user-setup.
The prologue includes a fail-safe mechanism so that
if no modulefiles are found, the user is not left in a
helpless state.
Personal Customization Area

A default personal customization file is pro-
vided for initial account creation or first time users.
If the user’s current .cshrc file does not contain a
personal customization area, then the default will be
inserted. If a user has made a mistake in the per-
sonal customization area, the -nc option user-setup
will force the default to be used.

The test for interactive shell is made in the per-
sonal customization area. This allows users to add
shell commands for all shells as well as for interac-
tive shells.
.cshrc File Epilogue

The epilogue.cshrc file contains any commands
which will be executed after the personal customiza-
tion. We place a network message of the day reader
here.
Question Order File

The us2.order file is used to define a required
order of initial selections. The first required selec-
tion chooses which flavor of UNIX is desired: BSD or
System-V. The second required selection is the win-
dowing system. This ordering assures that the other

applications will have a known base to work from.
This also simplifies the modulefile prerequisite list
since each windowing system requires a UNIX base.
Thus, a modulefile typically needs only to require
the necessary windowing system to work properly.
Modules Package

To help ensure fail-safe operation when appli-
cation servers are down, the Modules package is
loaded in the /usr/modules directory on each works-
tation. The Modules package constructs a
MODULEPATH which contains the names of direc-
tories which contain modulefiles. To ease mainte-
nance and help ensure coherency, at least two direc-
tories will be specified in the MODULEPATH:
/usr/modules/modulefiles and /usr/local/modules/OS/-
app-arch/release. The /usr/modules/modulefiles
directory contains the modules required to gain
access to the UNIX commands resident on the local
disk (e.g., /usr/bin.) The /usr/local/modules/OS/app-
arch/release directory contains modulefiles which
are applicable to the OS, application architecture,
and OS release. The /usr/local directory is auto-
mounted from several servers and contains the
majority of the modulefiles. If no /usr/local server is
operational, the /usr/modules modulefiles will be
sufficient to allow the user to login in a somewhat
working state. Additional MODULEPATH direc-
tories may be added by a user, instructor, or work-
group and will be automatically accessible to user-
setup.

A few minor modifications to the original
Modules package were made. These changes dealt
with the view of available modules. A program was
written to recursively search a directory and list any
files which had the Modules magic cookie. This
addition allows arbitrary directory depth as well as
the ability to place other files in the same directory
structure. This also allowed us to consolidate all of
the files relating to an application (e.g., olwm menu
generation information) in one place.

The description of each application is kept in a
file separate from the modulefile. By convention,
the module display command will also display the
contents of the description file. The convention
allows a simple shell script to be written which gen-
erates a list of the descriptions of all available appli-
cations. This will also come in handy for future ver-
sions of user-setup.
Related Programs

There are several programs which can be used
to modify a user’s environment which was created
by user-setup. make-olwm-menu (1) will generate a
custom applications menu for the user based upon
which modulefiles are selected. default-printer (1)
will safely add or change the PRINTER environment
variable. prmap (1) is an X-Window front end to
default-printer (1) and also provides information on
the location and type of network printers available.

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 217

user-setup: A System for Custom Configuration ... Elling & Long

Future Work

X-Window Interface
Development is underway on an X-window

based version of user-setup. It is anticipated that the
X version will be more popular than the terminal
based version. The goal of the X version will be to
provide a drag and droppable icons for each
modulefile. A user will be able to peruse a collec-
tion of modulefile icons and select those that are
desired.
Performance Enhancements

As the number of applications grow, the
modulefile directory structure also grows. This
affects the user-setup startup time since user-setup
searches all of the directories in the MODULEPATH

for modulefiles. A modulefile cache is being con-
sidered.

As part of the X-Window interface, a C++
class library for accessing modulefile description and
dependency information is being developed. This
development may lead to a C++ terminal version of
user-setup which will replace the csh script.
More Shells

user-setup currently supports csh. tcsh is easily
supported via user-setup since it is backwards com-
patible with csh. Bourne and Korn shell support will
be provided in a future version.
Example Session

In the extended example shown below, the user
would like to add a statistics package to their
environment.

guest% user-setup

Welcome to user-setup!

user-setup is a menu driven program that helps you to create and modify
your environment. You can run user-setup at any time to make changes in
your environment by adding or removing applications. You may quit at any
time and the no changes will be made to your account.

To use user-setup, select the applications you wish to add or remove from
your account. You will be shown a brief description of the application
and asked whether you wish to use it. When you are finished selecting
applications, select "apply" from the main menu.

Searching for available Modules.....done.

Press [return] to continue.

Application Classes

1 - apply
2 - help
3 - show
4 - demo
5 - math
6 - misc
7 - office
8 - unix
9 - win

Please select a Class of Applications [?,??,q]: math

Applications for math

1 - done
2 - mathematica
3 - matlab
4 - sas
5 - splus
6 - tksolver

Please select an Application [?,??,q]: 4

------- /usr/local/modules/sparc/SunOS/4.1.1/math/sas/6.07 -------

SAS version 6.07

The SAS system is an integrated system of software providing complete
control over data management, analysis, and presentation. There are

218 1992 LISA VI – October 19-23, 1992 – Long Beach, CA

Elling & Long user-setup: A System for Custom Configuration ...

two components of the SAS system available on the College of Engineering
Sun network: SAS/GRAPH and SAS/STAT.

Prequisites are (ORed): win/openwin/3.0 win/openwin/2.0 win/X11/R4 win/X11/R5
Append /vol/sas to PATH
Append /vol/sas/utilities/man to MANPATH

Do you want to use sas/6.07 [y,n,q] y

Applications for math

1 - done
2 - mathematica
3 - matlab
4 - sas
5 - splus
6 - tksolver

Please select an Application [?,??,q]: done

Application Classes

1 - apply
2 - help
3 - show
4 - demo
5 - math
6 - misc
7 - office
8 - unix
9 - win

Please select a Class of Applications [?,??,q]: 1

Applying environment changes...

math/sas/6.07
unix/sysv
win/openwin/3.0

Do you wish to apply these changes ? [y,n,q] y

Finished making changes to your environment. You may need to logout and
log back in for the changes to take affect.

You may also wish to create a custom menu based on your environment. To
do so, run the command "make-olwm-menu" or select the "Make new menu"
entry from the "User services" menu in OpenWindows.

Press [return] to continue.
Cleaning up temporary files.

Now the user’s environment is properly configured to run SAS. Now the user creates a custom menu for
the new environment:

guest% make-olwm-menu

Hello. I am ready to customize your OpenLook menu based upon the
modules you have loaded. The menu will be custom tailored to the
applications you’ve selected. We hope this will help make the
system easier to use.

Feel free to run this program any time to update your menu.

Do you want to update your menu now [y,n,q] y

Creating new menu...

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 219

user-setup: A System for Custom Configuration ... Elling & Long

No menu entry found for application: unix/sysv
Adding menu for application: math/sas/6.07
Adding default window system menu win/openwin/3.0.menu...
Renaming your existing .openwin-menu to /home/guest/.openwin-menu.bak
make-olwm-menu: removing temporary file.

The user’s environment is now completely
configured with a custom menu for running SAS.

Observations

user-setup version 1 was installed in September
1991. Version 1 was not menu based nor based
upon the Modules package and resulted in a system
which worked, but was not pleasurable to use nor
maintain. user-setup version 2 has been in use since
May 1992. Version 2 is menu driven, easy to use
and maintain, and based on the Modules package.
Approximately 2,500 users have used user-setup to
gain access to more than 100 major applications in a
ubiquitous environment. During this time we have
observed a number of interesting phenomena.
Help Desk

First and foremost, users stop bugging the help
desk asking how to get to applications. The stan-
dard help desk response is "run user-setup." This
has significantly reduced the workload on the help
desk.
Guidance

Instructors and workgroup leaders no longer
need to provide elaborate instructions on how to
modify user environments to gain access to required
applications. Their standard response is also "run
user-setup." This has proven to be an enormous
benefit since it is typical that a user may be taking
several classes and often the instructors would not
take this into account with their notorious instruc-
tions.
Explorers

Users are able to easily discover and use avail-
able software. This has helped reduce the number of
requests from the user community for new software
which is functionally equivalent to existing software.
This has also reduced the tendency for users to rein-
vent or download software which is already
installed.

Users can try out new software. We are con-
stantly installing new software and demonstration
software. With a few edits we can create new
modulefiles which will automatically be available
via user-setup. Often creating the new modulefiles
is easier than installing the software.
Training Gurus?

Many users don’t know UNIX commands, what
a "dot" file is, or even how to start applications from
the command line. All they need to know is how to
login, run user-setup, and run their applications from
the custom menu. We believe this is a good thing.

OLWM Menu Madness
Some users are disappointed when their appli-

cation can’t be started from the custom OLWM
menu. Unfortunately, some applications are just
impossible or impractical to start from menus. For
these, we don’t provide any custom menu entries.
Perhaps in the future we could pop up a brief "how
to get started with the application" help screen.
New User Dilemma

There is a dilemma facing administrators when
creating new accounts: should the user be forced to
run user-setup, or should it be considered an option?
If it is forced upon new users, they often are scared
and confused and may easily give up. If it is always
optional, what initial collection of modules is
needed? Specifically, should a windowing system be
part of the initial configuration? If so, which one?

Conclusion

user-setup enables users to change their
environment easily. Applications can be added or
deleted from the user’s environment without the user
having to learn editors or shell languages. New
applications can be installed and made accessible to
the users via user-setup by creating a simple
modulefile for the application. This helps solve the
problem of having too much software, too many
users, and not enough support staff.

Availability

user-setup and its associated programs are
available for anonymous ftp from ftp.eng.auburn.edu
[131.204.10.91]. If you don’t have internet access,
contact the authors to arrange other media. All code
is freely distributable.

Acknowledgments

We would especially like to thank John Furlani
who wrote the Modules package. John’s timely
LISA-V paper allowed us to stop our reinvention of
Modules early in the design cycle.

We would also like to thank the faculty, staff,
and students of Auburn University who used user-
setup version 1 and provided input to the Modules
based version 2.

Bibliography

[Furlani91] Furlani, John L., Modules: Providing a
Flexible User Environment, 1991 USENIX
Large Installation System Administration V
Conference Proceedings.

220 1992 LISA VI – October 19-23, 1992 – Long Beach, CA

Elling & Long user-setup: A System for Custom Configuration ...

[Ousterhout90] Ousterhout, John K., Tcl: An
Embeddable Command Language, 1990 Winter
USENIX Conference Proceedings.

Author Information

Richard Elling is the Manager of Network Sup-
port for the College of Engineering at Auburn
University. He graduated from Mississippi State
University with a BSEE in 1986. He has 11 years
of experience in writing and maintaining computer
aided engineering tools. His current mission is to
develop an awesome engineering environment at
Auburn. Reach him via U. S. Mail at Auburn
University, Engineering Network Services, 103 L-
Building, Auburn University, AL 36849. Reach him
via telephone at (205)844-2280. Electronic mail sent
to Richard.Elling@eng.auburn.edu is preferred.

Matthew Long is graduating senior at Auburn
University. He is available for employment 1/1/93.
Reach him via U. S. Mail at Matthew Long, 110
Cedar Crest Circle, Auburn, AL 36830. Reach him
via email at Matthew.Long@eng.auburn.edu.

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 221

